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Intervals in Evolutionary Algorithms for
Global Optimization

Rajendra B. Patil

Abstract— Optimisation i. of central con-
cern to a number of disciplines. Inter-
val Arithmetic methods for global optimisa-
tion provide us with (guaranteed) verified
results [6]. These nethods sre mainly re-
stricted to the classes of objective functions
that are twice differentiable and use a sim-
ple strategy of elimninating a splitting larger
regions of search space in the global opti-
mization process. This is done by estimat-
ing the bounds of the given function over
intervals using methods from interval arith-
metic. When applied to arbitrary compli-
cated objective functions these methods com-
pute overly pessimistic over-estimations of
the bounds and therefore cannot be effi-
ciently applied.

Evolutionary search algorithms are heuristic
global optimization techniques in the sense
that they do not provide a guaranteed (ver-
ifled) result. Many models of the Evolution-
ary Algorithms are empirically proven to be
robust and have demonstrated their capabil-
ity to produce good solutions in many com-
plex optimisation problems. These methods
require very little knowledge about the struc-
ture of the search space of the problem at
hand, so they are naturally applied to prob-
lems whose structure is poorly understood.
This includes the cases where the exact func-
tion to be optimiszed is unknown. In such
cases the Interval Methods of Global Opti-
mization cannot be applied. The disadvan-
tages of Evolutionary Algorithms for global
optimization are that they are compute in-
tensive, do not provided verified results and
have complex dynamics making the theoreti-
cal proofs of their efficiency and convergence
difficult.

An efficient approach that combines the ef-
ficient strategy from Interval Global Opti-
mization Methods and robustness of the Evo-
lutionary Algorithms is proposed. In the pro-
posed approach, search begins with randomly

created interval vectors with interval widths
equal to the whol: domain. Before the be-
ginning of the evolutionary process, fitness
of these interval parameter vectors is defined
by evaluating the objective function at the
center of th« initial interval vectors. In the
subsequent evo:utionary process the local op-
timization process returns an estimate of th~
bounds (lower or upper for minimization or
maximisation) of the objective function over
the interval vectors. Though these bounds
may not be correct at the beginning due to
large interval widths and complicated funec-
tion properties, the process of reducing in-
terval widths over time and a selection ap-
proach similar to simulated annealing helps
in estimating reasonably correct bounds as
the population evolves. The inter-al param-
eter vectors at these estimated bounds (local
optima) are then subjected to crossover and
mutation operators. This evolutionary pro-
cess continues for predetermined number of
generations in the search of the global opti-
mum.

In the proposed approach, though the ver-
ifled nature of the Interval Glebal Optimiza-
tion Methods is not preserved, empirical
results over standard benchmark functions
has shown to have preserved the efficiency
and robustness properties of the two ap-
proaches, The proposed approach is bench-
marked against Parallel Genetic Algorithm
and is observed to be more robust and in
seme cases order of magnitude efficient.

[. INTRODUCTION

Optimization is of central concern to a number of
disciplines in which numerical information is pro-
cessed. Many problem solving methcds in opera-
lions research, applied mathematics and artificial
intelligence (Al) have an optimization procedure as

‘The author ls with Compuling Research and Applications
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a subcomponent and the performance of these tech-
niques hinges critically on the quality of the op-
timisation technique. The problem characteristics
decides if the optimisations is constrained or uncon-
strained and whet:er the parameter space is contin-
uous or discrete. In either case, the search method
used to search for an optimum could be local or
global, deterministic o: stochastic, or in some cases
a combination of these.

Optimisation is concerned with the characterisa-
tion and computation of minima or maxima of a
function f(£). Given,

f:XCX1xX3x..xXn—R, X#80 (1)

where f is called the objective function, the goal is
to find a vector £° € X such that:

VEEX:f(£)> f(&) =" (2)

where f* is called the global minimum and #*
is the minimum location point or a set. Since
max{ f(Z)} = —min{— f(£)}, the restriction tc min-
imisation is without loss of generality. In general the
optimisation task is complicated by the existence of
non-l'‘near objective function with multiple locai op-
tima. A local optimum f' = f(£’) is defined by the
following condition

Je>0,VieX ||Z-7F |[<e=>f <f(E) (3)

Even if there is only one cptimum, it may be dif-
ficult to find a path towards it if there is a dis-
continuity in the objective function or its deriva-
tives. Wide variety of methods for finding globa!
solutions to zonlinear optimisation problems have
been proposed. In this paper we will concentrate
on global unconstrained optimisation using interval
based evolutionary search.

Traditional calculus based methods assume that
the objective function f(Z) (and constraints in con-
straint optimization) are twice continuously differ-
entiable functions of £ These methods require ex-
plicit or implicit second derivative calculations of
the objective function which in some ccaes can be
ill-conditioned and cause the algorithn. to fail. Dur-
ing the last 30 years there has heen considerable re-
search directed towards ihe nonlinear optimization
problems and progress has been made in theory and
practice [12]

In general there is no known method for deter-
mining global maximum (or minimum) to the gen-
eral nonlinear optimigation problem. Only if the ob-
jective function f (and the constraints c;) satisfies
certain properties, the global optimum can some-
times be found. algorithms {or constraint problems
are usually classified as indirect and direct methods.
An indirect method solves the problems by extract-
ing one or mote linear problems from the original

one, whereas a direct method tries to determine suc-
cessive search points. This is usually done by con-
verting the original problem into unconstrained one
for which gradient methods are applied with some
modifications [14].

There are many other problems connected with
traditional optimisation techniques. For example,
most proposed methods are lccal in scope, they de-
pend on existence of derivatives, and they are insuf-
ficiently robust in discontinuties, vast multi-modal,
or noisy seatch spaces [10]. Indeed, for many real
world problems it may be impossible to find deriva-
tives of f or in some situaiicos f may not be known
at all. In those cases the only way ‘o get informa-
tion about the function is to evaluate it at different
values of Z. The performance of most optimization
technigues is thus compared using the number of
function evaluations required to find the optimum.
In this regard, it is important to investigate other
heuristic methods which may prove useful in many
real world problems. The restricted cases where
the parameter space can be searched exhaustively
or the objective function can be subjecied o ana-
lytical methods are not considered here.

The main reasous for the failure of many op-
timisation slgorithms are, the algorithm can get
trapped in a local optimum (known as the foothill
problem), it can get trapped in mostly flat surfaces
with few sharp peaks (called the plateau problem),
or it can get trapped because the direction of ascent
(or descent) is not within the direction of search
motion (known as the ridge problem) [7].

A. Evolulionary Computalions

Evolutionary computation belongs to a large class
of methods which attempts to optimise a function
using a strategy essentially independent of the prob-
lem at hand. These methods require very little
knowledge about the structure of the search space of
the problem at hand, so they are naturally applied
to problems whose structure is poorly understood.
Evolutionary algorithms are population based
search strategies that maintain the locations of a
set of probes in the function parameter space. The
standard of comparison for which new probes are
generated or old probes are discarded is a function
of existing probe population. Combinations of indi-
vidual probes in the population are used to derive
new probes. The probe penulation is arbitrarily ini-
tialized, and it evolves towards better and better
regions of the search space by means of random-
ised processes of selection (deterministic in some
cases), mutation, and recombination (not used in
some). The environment delivers a quality of infor-
mation, the fitness value (objective function value)
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of the search probe, and the selection process favors
those individual (probes) of higher fitness (“survival
of the fittest™) to reproduce more often than worse
individuals. The recombination mechanism allows
the mixing of parental information while passing it
to their descendants, and mutation introduces in-
novation into the prob- population. Thus, during
the evolution process the average quality of popula-
tion (probes, solutions) increases, hopefully leading
to optimum solution.

The retaphoric description of evolutionary algo-
rithms can be put into more formal terms. Here we
use the formralism developed in [29).

Let f : R™ — R denote the objective function to
e optimised. Let £ € R™ be a probe. The search
algorithm may directly use Z as vectors o: real num-
bers, or use it in some encoded form, @ = &(Z) (e.g.
binary, graycode). In some evolutionary algorithms,
Z is used as vector of .eals (Evolutionary Strategy),
while in others 2 s first encoded into binary vector
@, and is used in the process (Genetic Algorithms).
In th.s paper we usc & as & vector of intervals. Many
other representations are possible. Solutions in the
parent and offspring population sets are denoted I*
and I*. The fitness function ® : 5 - Ror®:d - R
defines the fitness value of an individual £ or @ in J
respectively. In general, fitness function ¢ and ob-
jective function f are not required to be identical,
but f is always s part of ®. While @ € / i» uied
to denote the representation of an individual used
in the process, Z € R™ indicates the obje~t variable
vector. In effect, @ = e(F) where ¢() is some _ncod-
ing function. Ccrrespondingly there is a decoding
function to get the objective vector £ from encoded
vector @. Furthermore, u 33 1 and ) 3> 1 denote the
parent and offspring population. A population at
generstion ¢, P(i) = {@(t), ..., 3u(t)} consists of in-
dividual &(t) € I, and rg_ : I* — I* denotes the re-
combination operator which might be controlled by
additional parameters summarised in set ©,. Simi-
larly the mutation operator mg_ = I* — I* modi-
fies the offspring population controlled by some pa-
rameters ©,,. Selection se, : (I* U J¥+2) — I*
is applied tc¢ choose the parent population of next
generation. During the evaluation step the fitness
function ¢ : I — R is calculated for all individu-
als of a population, and some form of termination
criterion, 7 : {true, false} is used. The algorith-
mic description of a typical evolutionary algorithm
is given below [20)].

ALGORITHM 1: Cvolutionary Search Algorithm
t=0;
initialice P(0) = {@1(0),...,@,(0)} € I*;
evaluate P(0) : {®(d,1(C)), ..., ¥(d.(0))}

while (T # tr'ue) do
recombine P'(t) = re, (P(t));
mutaie P ‘.t) z: me,(lf (t)); »
conhuate P (1) = {$(2) (1)), .. $(& (D)
select: P(t+1) =30, {P (t)UQ}
t=t+1];

end while

Here, Q € {0, P(t)} is a set of individuals that are
additionally taken into account during the selection
step.

Some main-streams of Evolutionary Algorithms
(EA), based on model of natural evolution are
Genetic Algorithms (GA) [15), Classifier Systems
(CS) [18] by Holland, the Ewoluwtion Strategy
(ES} (20, 1] by Rechenberg and Schwefel, Evolu-
ticnary Programming (EP) by Fogel, Owens and
Walsh [16] and Genetic Programming (GP) [19] by
Kosa. The approaches mainly differ with respect
to the structure of the individuals in the popula-
tion which directly influences the recombination and
mutation operators. The ES and GA are powerful
methods for global optimisation, not needing any
more information about the objective function than
the actual value of the objective function. They do
not use any predefined internal model of the objec-
tive function. Each of these mainstreain algorithms
have demonstrated their capability to yield good
approximate solutions even in case of complicated
raulti-modal, discontinuous, non-differentiable, and
even noisy or dynamic objective function optimisa-
tion problems. A variety of applications have been
presented in {22] [23]1 [24], [25]| 26], [27]'[23],51“‘-'
an annotated bibliography collected in [29]. Due to
their complexity, all EA algorithms lack mathemat-
ical proofs of general convergence and efficiency.

B. Interval search and optimization: Moltivation

Interval methods are aimed at finding the global op-
timum of a twice differentiable objective function f
defined on a hyper-rectangle X and baving gradient
v f and a Hessian ©?f with only finite number of
(isolated) seros. Their emsence is in evaluation of
images f(2),vf(Z), V1f(Z) for hyper-rectangles
Z C X with the purpose of ex<lud'ng those which
cannot contain extremal points [4]. Interval meth-
ods for global optimisation find the global optimum
and provide bounds on its value ard location(s) that
are guaranteed to be correct despiie errors from
rounding, approximation, and uncertain data [6].
Interval analysis also provides a means for doing
sensitivity analysis in a more definitive way. Interval
Newton methods have the disadvantage of needing
gradient information in explicit or in:plicit form.
Until recently, it was thought that no numer-
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ical optimisation algorithm could guarantee hav-
ing found the global solution of a general nonlin-
ear optimisation problem. Many researchers said
that such a guarantee was impossible [6]. Their ar-
gument was based on the observations that, opti-
mization algorithm can sample the objective func-
tion and perhaps some of its derivative at only fi-
nite number of distinct points. Hence, there is
no way of knowing whether a function to be opti-
mized dips to some unexpectedly srrall value be-
tween sample points. This is a reasonable argu-
ment and it is probably true that no algorithm using
stcndard arithmetic will ever guarantee finding the
global solution to a general problem. However inter-
val methods do not sample at points. They obtain
bounds for a function over an infinite continuum of
points [6]. Conaider the function (taken from [6]),
f(z) = 2* — 4z?, with minima at z = +2'/2. Here
f(1) = -3 and f([3, 4]) = [17,220]. Thus, we know
that f(z) > 17, Vz € (3, 4], the minimum value of f
is no larger than -3. Therefore, a minimum value of
J cannot cccur in the interval [3,4]. To find this,
only two “evaluations” of function f are needed.
Notice that ®"evaluations® of f were over the inter-
vals. Function evaluations over interval is an active
area or research and is an important part of inter-
val based search methods. Finding the bounds of
a given function f in an interval is the restricted
version of problem of optimisation but simply over
a sn:aller (possibly) domain. The intesval obtained
when evaluating an interval function depends on the
form of the function. Considerable effort has been
expended by :nterval analyats in attempting to pro-
duce systematic methods for representing an inter-
val function to most sharply bound the range of a
given real function over an interval [5]. For mono-
tonic functions these bounds are easy to find. For
complicated functions Interval Arithmetic methods
compute overly pessimistic over-estimations of the
bounds and are useless in the present context.

The intervai search approach outiined ia this pa-
per has been previously suggested in [8) using prin-
ciples of genetic algorithms. Here we examine this
approach in more detail and suggest some modifi-
cations for improving the efficiency and robustness.
We also compare the previously p:oposed interval
based GA to the proposed modified approach. In
summary, the evolutionary interval rearch proce-
dure is initialised with a population of interval vec-
tors. Each such interval vector representa a hyper-
rectangle in the parameter space. Function f to
be optimised is then evaluated over these interval
vectors. In the previously suggested approach [8)
the evaluation of f is carried out at the center of
the hyper-rectangle, in the proposed modification

a local search methods is used. The initial popu-
lation has largest interval widths vectors covering
the whole domain. As the evolution of these in-
terval proceed using principles of evolutionary al-
gorithm, the size of hyper-rectangles is reduced.
Principle similar to simmulated annealing is used in
the selection process. During the evolutionary pro-
cess, the crossover evolutionary operator combines
parts of these hyper-rectangles to form new hyper-
rectangles. At times the crossover operator also gen-
erates new hyper-rectangles hy taking intersections
and unions of these search hyper-rectangles. The
mutation creates new hyper-rectangles as search
probes in the parameter search space.

II. INTBRVAL EVOLUTIONARY SEARCE
ALgoRriTHM (IESA)

Interval Evolutionary Search Algerithm (IESA) bor-
rows idea from several other randomised methods.
The structure of IESA is based on evolutionary al-
gorithm with interval representations. It aiso com-
bined ideas from simulated annealing and hill climb-
ing (local optimisation) in the evolutionary opera-
tors. IESA consists of interval representations, ini-
tialisaticn, fitness evaluation, and evolutionary op-
eretors of Reproduction, Crossover, Mutation, Local
optimization and Selectiou.

A. Interval Represenialions

The schema theory proposed in [15] give valid moti-
vation for the usz of hinary string for the represen-
tations of solutions in the population of solutions.
This maximizes the number of schernata available i
the evolutionary search. This also increase the size
of the search space as each parameter in the objec-
tive function is encoded as a binary string. Higher
precision can be achieved by increzsing the number
of bits. On the other hand, this does not iead to 2
natural coding of the problem. The need fur bet-
ter accuracy in the location of minimum suggests
the use of real-valued solutions in the population of
solutions. The representational issue in these, other-
wise very similar algorithms has lead to the develop-
ment of two evolutionary search paradigms, called
Genetic Algorithms (GA) and evolution strategies
(ES). The binary va. real representational issue is
addressed in [2].

In 1IESA the population of solutions, P =
{&;,...,8,}. Here P is a set of interval vectors &,
where, vector & = (&;, ..., Gin) is &8 n dimension in-
terval search vector of » n-variatle function f(Z) to
be optirnized. Notice here that the furction f(3)
be’ng optimrised is real-valued and the optimum z*
that we are interested in is also a real-valued vector.
We are simply using interval vectors in the search
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process though the final answer is expected to be
a real-valued vector. Each jth interval component,
a;; of an interval search vector, &; is defined wnth
three values as, &;; = (&},,&5;,a};), whre al;,a;
and &}; is the lower, center and upper point of an
interval &;;, such that &; < af; < &J;. The param-
eter w;; = &Y — &;, is the width if interval &;; and
changes adaptively during the search process. The
outline of the algorithms is given below.

B. Algorithm

initialize P(0) = {3;(0), ...,3.(0)};

set initial temperature, T;

sel initial widths, w;

evaluate P(0) : {#(25(0)), .., #@S(O))

while (7 # true) do
crossover P (t) =re (F(t))
mulate/megre I (t) = me, (P (1));
locel opt Prapi(t) = {L(@S(8)), - LS
select P(t+ 1) = se, {Proye(t)};

wpdale wndths, - |

update temperaisre, T
t=t+1;

end while

C. Initialization

In the initial population, P(0) = {a,, ..., &,} is con-
structed by choosing u random interval search vec-
tors. Sach random interval search vector, & =
(@1, ..-»@in), i8 constructed by choosing n ran-
dom cencers, &f;, for each the interval components
aij,j = 1,...,n. The initial widths, w,;, of each in-
terval component &,;,j = 1,...,n, is set to the size

of the whole domain over which f(Z) is to be opti-
mised.

D. Fitness evaluation

At iteration t in the evolutionary process, fitness
evaluation assigns a fitness value to each individual
interval searck vector, &; = (Gy,...,8n), 1 = 1,..., 4,
in the popuiation P(t). Fitness evaluation is a crit-
ical part of evolutionary search paradigm as this
is the only irformation the evolutionzry algorithma
use in the search process. In the present context, we
are to assign u fitness value to each interval search
vector. This requires evaluating the objective func-
tion f(£) with interval parameters. The estimation
of bounds of the objective function using interval
methods can be uard as fitness value. To get sharper
L.:inds, this process requires the function to be in
~entered form [6]. As no a priory assumptions are
made about the form of the function, converting an
arbitrary function to its centered form is difficult.
Also In cases where function is not know, interval

methods cannot be used to find the bounds.

A heuristic approach to bounds estimution is used
here. Before the beginning of the evolutionary pro-
cess, fitness of these interval pa-ameter vectors isd .-
fined by evaluating the objective function at the cen-
ter of the initial interval vectors. In the subsequent
evolutionary process the local optimisation process
returns an estimate of the bounds (lower or upper
for minimisation or maximisation) of the objective
function over the interval vectors. Though these
bounds may not be correct at the beginn‘ag due
to large interval widths and complicated function
properties, the process of reducing interval widths
over tirae and a selection approach similar to simu-
lated annealing helps in estimating reasonably cor-
rect bounds as the population evolves. The interval
parameter vectors at these estimated bounds (local
optims) are then subjected to crossover and muta-
‘ion operators. This evolutionary process contin-
ues for predetermined number of generations in the
search of the global optimum.

Any efficieut local search process can be used to
estimate the bounds. Any such estimates will al-
ways improve the search. The critical issue here is
how efficient it is to compute 1eavonably zorrect es-
timates to guide the search. Caution is to be taken
in using the estimates as they could be totally wrong
in the beginning of the process and poteutial search
regions can be eliminated completely at the begin-
ning of the evolution. Mutation operator hLelpe re-
cover from this situation.

E. Evolutionary Operators

Many types and versions of evolutionary opera-
tors have been proposad in the evolutionary search
literature. We used the operators reproduction,
crossover, merging, mutation and selection sug-
gested in [8].

E.1.

The reproduction operator. p,, selects two parent
intervel mearcr vectors, &, and &, lo generate an
instaace of a new offspring interval vector to be
used by the crossover operator. 'Che selection of
parenut interval vectors iur reproduction is made us-
ing Boltzmann distribution as,

p.(8:) o exp (— ﬁ;l) (4)

Here f(&;) is the fitness value of the interval vector
&;, and T is the ternperature. Temperature T in
the Boltzmann distribution controls the uniformity
of the selection of parent interval search vectors. At
the beginning of the search process, with high T, the
parent selection is uniformly random over the whole
comain. This results in having the same selection

Reproduction
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probability for all intervals in the population. As
temperature T is decreascd the selection of parents
for reproduction narrows down to most promising
regions and selects tl= parents only among those
intervals which are better. Using Boltsmann distri-
bution also has advantage of not having to scale the
fitnems function values [8].

E.2. Crossover

This evolutionary operator generates a new instance
of interval search vector, &; from two parent inter-
val search vectors, & and &;, sclected for reproduc-
tion, by swapping their components. A multi-point
crossover is used in generating new offspring interval
search vector. The centers &3;,5 = 1,...,n, of each
interval component &;; in the offapring interval vec-
tor, &, is chosen with same probability from either
the center, &f; or &f, of the parent interval vectors
& and &;. The widths, wy;, for offspring interval
vector are amigned the values of th: corresponding
widths of the parents, selected in above process.

a5, uy; = | %u  with probability 0.5
5 W = a:)_'w.j with provability 0.5
E.3. Merging

Occasionally, with some probability, the merging op-
erator is applied in the evolutionary procesa. A new
ofapring interval search vector is generated from
two parent vectors selected by the reproduction op-
erator by taking the intersection (when not empty)
of the hyper-rectangles they represent. This oper-
ator points out most promising regions of the do-
main that the algorithm encounters in the search
process [8]. Probability of application of this oper-
ator is kept low.

E.4. Mutation

This operator only modifies the center of interval
components in a interval search vector and does not
change the their widths. This generates interval vec-
tors in the new regions of the search space. Muta-
tion is the only operator that generates “new genetic
material” in the evolutionary process. Crossover
and merging uec existing “genetic material”. Each
interva] vector in Lhe population is subjected to Mu-
tation with mutation probability, p.. Once selected
for Mutation, each of its component is selected for
Mutation with probability 0.5. If the componert
is selected for Mutation the center of the interval
component is mutated withia the associated interval
or outside the interval (in the whole domain) wi..
some probability. In our implementation within in-
terval mutation probability is kept 0.8 and outside
interval mutation probability is kept 0.2. Mutation
within the interval (whose width reduces over time)
or within the whol= domain helps in overcoming the

(5)

problem associated with fixed sise population where
rew generation falls in the rame old traps and slows

the progress.
E.5. Loceal Optimization

During the first cycle of the evolutionary process,
the local optimisation process starts from the ini-
tially generated random solutions. These initial
points have interval widths as large as the whole
domain. The local optimiration process returns the
local optimuin found. These local optimum become
the solutions of next generation. In subsequent gen-
erations the local optimisation process is started
with crossed and mutated versions of the local op-
timum found in the previous generations. The local
optimisation process is similar to the one suggested
in [7] except that the resolution parameter is made
adaptive. The adaptive resolution parameter im-
proves the efficiency of the local optimiser by re-
ducing the ~umber of function evaluations at the be-
ginning of the evolutionary process, which in many
cases are local optima. The resolution parameter
is reduced slowly as number of generations increase
and the main algorithm expects inore and more reso-
lution from the local optimiser procedure. The basis
local optimiser used is given below. Here parame-
ter Resolution is decreased slowly as the evolution
proceeds.

intiglize
while | ¥ |> Resolution
tler =0
while f(Z + 9) > f(Z) and iter < MAXITER
v = NewDirection(v)
tter = iler + 1
if (2 +9) > f(2)
7 =5/2
cise
£+ v
=M
return ¥
Here v is a -tep vector and growe or shrinks ac-
cording to the recent progress made. MAXITER
determines iterations at each step before shrinking
the vector. Resalution is the sraailest step size al-
lowed [7]

E.6.

At iteration t of the evolutionary process, af-
ter applying reproduction, croasover, merging
and mutation to the g interval vcctors in
P(t) = {&(t),...,8,(t)}. After reproduction,
crossover, merging and mutation, )\ new off-
spring are created from P(t).  Let P(t) =
{B5(t), ... & (L), @, (t), ..., &, ,(t)}. To create the

population, P(t + 1), u interval vectors form P'(t)

<Ny
(T

Selection
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are chosen based on the selection operator using
Metropolis criterion. If &,(t + 1),n = 1,..., 4, is
the nth interval in next generation cf interval search
vectors and § is a random number in [0,1), then,
Ea(t+1)is

Buia(t) if € < p(Ea(t))
E.(t) if € > p(Ea(L))

where p(&,(t)) is
ﬁ‘u(‘)) = exp (_ _f(.#"'ﬂ(t.)) — f(‘ﬂ(t))) , (7)

ae+1)={ (8)

T

where n = 1,..., u. The Metropolis criterion prefers
interval search vectors with better fitness values, but
allows local minima to be overcome by accepting
uphill moves (8].

E.7. Annecsling of Temperature

In the above evolutionary operators, tewnperature
T, controls the reproduction and selection process.
With high temperature, random search takes place
while with very low temperature algorithm usually
gets trapped in & local optimum. A simple method
of adaptive temperature suggested in [B] is used.
The temperature T(t) is updated after N iterations
as, T(t+ N) = T(t)/a. The parameter a < 1 is
fixed. Every time the temperature is updated the
new temperature is compared with Tinip - G, where
Tmin € 1, is a small fixed parameter and G is the
geometric mean of the differences between the fit-
ness function values in the current population and
the optimum fitness value, f(&.) up to the moment.

G= (_II(f(i,- - f(i-)))

In this process, if T(t + N) < Tpin - G, then,
T(t + N) = max(G,| f(i.) |) is chosen and the
search is continued. The same method is used in
the initialization process.

E.8. Updaling of Widths

The widths of intervals components of interval
scarch vectors are updated as every time an interval
search vector &; is better than the current optimum
&,, its width is changed as follows [8]:

| 3. — & |
i h. (9)
p-max; | &.; — &; |
This increases the widths mostly in the direction of
current optimum.

i
.

8)

w.-,-:w.-,--(1+

III. EXPERIMENTS AND RESULTS

We demonstrate the performance of the interval
based evolutionary search strategy on a set of well
known optimisation problems. These functions have

been typically used as benchmark functions in evalu-
ating npiimisation algorithms. Details on these test
functions are given in section IV.The test function
are referred to by their names or the authors who
first proposed these problems as benchmark prob-
lems. The test suite contains functions that are

Results reported over these test functions are aver-
aged over 20 independent runs with different ran-
dom initial populations. In all the example, global
optimum is know and this information was used by
termination criterion. In all cases, optimum found
was required to be within 19-® to the true global
optimum along all coordinates.

Following parameter values were used in testing
the performance. Population sise u4 = 20, cromover
probability p. = 0.2, merging probability pm =
0.005, Number cf generations before updating tem-
perature N = 100, Number of generations before
updating widths == 50, Temperature update coefli-
cient a = 1.5, and width update coeflicient a = 2.
Same set of parameters were used in optimising all
test functions.

It was obeerved that in most cases the algorithms
is able to find good direction for search in very few
generaticns. Most cycles are taken to get the re-
quiced precision of the optimum. For example in
Ackley's function f;2, the optimum close to true op-
timum by 10~! was found consistently in few hun-
dred function evaluations along all coordinetes. The
large number of evaluations required after this point
are to get to the required quality of optimum which
is as close as 10~ % to true optimum.

In co:nparison, a multi-population genetic algo-
rithm, PGA v2.7 [31] was used. Following param-
eters were used in PGA. Number of populations =
5, Number of individuals in each population = 20,
Number of bit per variable = 16, Rank selection was
used. Mutation rate = 0.005, Two-point crossover
was used and Migration interval = 10. Same set
of parameters were used in optimising all test func-
tions. No convergence situation is indicated by a
uon

The table summarises results over a set of bench-
mark functions. In the first column, f(Z) is the
name of the functions, in the second column, n is the
pumber of dimensions, in the third column, IESA in-
dicates the number of function evaluations used by
the Interval Evolutionary Search Algorithm (IESA)
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without the local optimisation process. The fitnems
in this algorithm is evaluated at the center of the in-
terval vectors. In the fourth column, PGA indicates
the number of function evaluations required by the
Parallel Genetic Algorithm [31). In the fifth column,
IESA+HC indicates the number of fanctioa evalu-
ations required by the Interval Evolutionary Search
Algorithm (IESA) with the local optimisation pro-
cens.

First thing to notice in the table is the robustnes
of the IESA+HC approach. It converges in all cases
while the [ESA and PGA do not. In many cases
the IESA+HC approach is order of magnitude faster
then the 1IESA aad PGA approach. In the case of
fr the bad performance of IESA+HC approach can
be attributed to the large number of local optima.
At the end of every generation, the population in
IESA+HC approach consists of local optima. These
are then crossed and mutated and sent to the local
optimiser in the next generation. If the population
sise is made dynamic, the IESA+HC approach will
collect more and more local optima at every genera-
tion. Any attempt in generating new points far away
from these collected local optimum will increase the
efficiency in this case. Due o fixed sise population
in the present implementation individuals in the new
generations fall back into the same local optimum
they started from and progress is halted or made
slowly. Example of such situation is seen in Shekel’s
Foxhole function, f5.

Lfm n | IESA PGA [ IESA+HC
h 21 4388 2212 90
15 | 21904 175626 551
30 | 50012 50316 1313
fa 2| 5208 2550 343
4 ? ? 27172
h 5| 2308 1987 889
fa 2| 2420 ? 78
4| 3940 ? 117
8| 5982 ? 242
16 | 35278 ? 511
32 ? ? 1084
fs 2| 8386 2212 3481
fo 2 ? ? 92
4] 12236 7935 207
8 | 16513 17240 837
16 | 42749 45475 22970
32 ? ? 56297
fr 2 ? ? 200
4 | 18297 7900 42048
8 | 28226 18620 50598
16 ? ? 59464
32 ? ? 1262
fe 2 | 41901 2312 258
fo 2| 1956 4355 178
fio | 20 | 88981 117200 25407
n 2| 7200 3811 113
4 ? ? 405
8 ? ? 1375
20 ? | 170000 (?) 22130
fiz | 15 | z6437 48033 1599
30 ? 113950 6057
fia 4 | 28865 6675 22
Jia 2 | 11462 4762 675
10 ? ? 7627
fis 4 | 41431 20870 75437
fie 9| 1670 ? 975
16 | 2280 ? 4165

IV. TBST FUNCTIONS

The tzst functions used in testing the optimisation
algorithm are given below.

o fi: Sphere Model [1]

f(@)=) a?

=1

n = 30; -5.12 < 2; < 5.12; min(f) = £(0, ...
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< s

The sphere modelis smooth, unimodal, symmetric
and doea not have any problems of a ridge, plateau
or a foothill. The performance on this model is a
measure of the general efficiency of the optimisation
algorithm.

o fa: Rosenbrock’s function [1]

12) = 37100  (z1y - 223+ (32— 1)

i=1

(11)

-5.12 < 2; < 5.12; min(f) = f(1,...,1) = 0.

This is a continuous, unimodal and bi-quadratic
function (Figure 1). It has a very narrow ridge with
a very sharp tip and runs around a parabola. The
progress of many algorithms is very slow and are
unable to discover good direction.

o fy: Step Punction [1]
f@)=6n+) || (12)
i=1

~5.12< z; < 5.12;
min(f) = f([-5.12, —5), -.., [-5.12, —5)) = 0.

This is a representative of plateau problem with
linear and discontinuous properties. Flat surfaces
do not give any information as to which direction is
favorable. If the algorithms does not have variable
step sise, optimising functions like this is a problem.

o fu: Quartic functien with noise [I)
f(@) =) iz + gauss(0,1)

-1.28 < 3; < 1.28; min(f) = £(0,...,0)= 0

(:3)

This is simple function padded with noise. The
Gaussian noise results in different value of the func-
tion at ‘he same point when sampled at scparate
instances. This makes it a good noise resistance
test for optimisation algorithm which is a necessary
part of many real world problems.

o fs: Shekel's Fozholes [1]

1 1 - 1
-t (14)
/@ K ;gl ¢+ E?:l(”i - a;;)¢
(ai;) = /-32-16 0 16 32-32.. 01632
®i) = \—32 —32 —32 —32 —32 —16 .. 32 32 32

K = 500; f(ay;,aa;) = ¢; = j
—65.536 < z; < 65.536; min(f) = f(-32,-37) = 1.

600

This is a continuous, nonlinear, multimodal func-
tion with several local optima. It is difficult for op-
timisation algorithms because it has large plateau
with equal function value with 25 narrow holes
which have a different function value at their bot-
toms. Many algorithms get stuck in the first uole
they find.
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e fo: Plateas function [3)

)
J(£) = ) _ 2500 - max;{1000. | =, ||
j=1
G- Dh<i<ihh=n/4
nin(f) = f(max;cica | 2 [< 107?) = 0.
The Plateas function has large number of flat re-
gioas whose value gradually decreases towards the

o fr: Porcupine faaction (3]

(15)

J(£) = 10%-(c + 1.83) (16)
c=10"3y" 1=}

1=10%n—-c)-2- lﬂ'!;_-_‘)]

min(f) = £(0, ...,0) = 0.

In this ﬁmctlon. every time |10%(n — c)] is an
even number there is a local minimum, leading to
very large number of local minima  Figure. 2 shows
the function and the location of the global opti-
mum. The value of f(Z) decreases slowly towards
the global minimum (the origin). The high density
of local minima here is a major problem for many
optimisation algorithms.

o fo: Sines function
f(z) = l+lin’(z,)+lin’(::g)—0.lexp(—z}—zg)(”)
—10<zl,z;< 10 mf) f(O 0)

This function is continuous and mu.ltl modu.l with
large number of local minima with very small dif-
ferent in their values. Figure. 3 shows the function
and the location of the global optimum.

e fo: Goldstein and Price

f(£) = [1+ (21 +za+ 1)*(19 — 14z, + 3z}
—14z;3 + 6z,z5 + 3:;)]
[30 + (22, - 322)*(18 — 32z,
+12z} + 4825 — 36z, 2, + 2723))
-2 < zy,z2 < 2;min(f) = f(0,-1) = 3.0
This funchon is continuous, multi-modal and non-
linear. Figure. 4 shows the function and the loca-
tion of the global optimum. The problems optimisa-
tion algorithms face with this function ia the peak
response of about five orders of magnitude greater
in the neighborhood of the optimum.

e fi0: Schwefel’s Function

E (Ez,) =zTAz +o7

(18)

(19)

i=1

n = 20; —65.536 <
min(f) = (0, ...,

z; < 65.536;
0) =0.

x 10°

-100

This is a continuous and unimodal function. The
difficulty here is that searching along the coordinate
axes only given poor rate of convergence, since the
gradient of the funclion is nov oriented along the
axes. The valley bere is much narrow (as compared
to Rosenbrock’s function) due to the worsening con-
ditions of the form matrix A with increasing n [28).

e fi11: Restrigin’s Function

J(Z)=10n+ zn:z? — Acos(27z;)

=1

(20)

n=2;-512< z; <5.12;min(f) = £(O, ...,0) = 0.

This is a scalable, continuous, multi-modal test
function which is made from the Sphere mode! by
modulating it with Acos(2xz,) [29]. Figure. 5 shows
the function and the location of the global optimum.
Far away ftom the origin this functions looks like the
Sphere model, but with small-r z, the effect of the
modulation grows and dominates the shape. The
multi-modality here present substantial difficulty to
many optimisation algorithms.

o f12: Ackley’s Function [3]

—20exp (-0.2

—exp ( Zcos(Zﬂ:.)) +20+e¢ (21)

i=1
n = 30; -30 < z; < 30; min(f) = f(

4:

f@) =

2
_Jz‘

=1

S|
- u

0,..,0)=0
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s -sp

This is a generalised variant of a multi-modal
function by [3]. This function bas been transformed
such that the global minirm. is located at tke ori-
gin.

o fia: Nowhere Differentiable Punction [17]

D P
|2“2| — 2‘3.] |
@ =[a+ry E2]
k=1 n=0

n = 4;8 = 60; —1000 < z; < 1000;
min(f) = f(9,...,0) = 1. This function (8 = oo)
is continuous but nowhere differentiable. It is a D
dimension variation of contraction mapping defined
in [17). This test function has infinite number of
local minima-

e fis: Griewenh 1
() = agzi - Ecu (—\/.—‘-) + 1.
d=200;n=2;-100 < z; < 100;
min(f) = £(0,...,,0)=0.
Figure. 6 shows the function and the location of the
global optimum.

e fis: Coluville

(&) =

(22)

(23)

100 - (2, - (23)) - (21 — (=3)) (24)
+(1 — z0) * (1 — @o) + 90 - (23 — (=3)05)
+(1 —22)? +10.1+ ((2;, — 1.)? (26)
+(23—1)") +18.8 % (2, — 1) * (23 —(RE)
n = 4;-1000 < z; < 1000;

min(f) = f(1,..,1) = 0.

i|ay b e bt
1]0.1967 [ 0.25 (| 7 0.0456 8
2| 0.1047 06| 8 0.0342 10
3 |0.1735 19 0.0323 12
4 | 0.16G0 2 || 10 | 0.0235 14
5| 0.0844 4 || 11 | 0.0246 16
6 | 0.0027 6

e fig: Newrsl Networhks: Parity Function

In this test, weights of a standard 2 input 2 hidden
and one output node neural network architecture are
found by finding the optimum of the error function
defined over a model of the parity function. The
total of 9 weights are used in the network. The
error function is

9
f(B) = Y (t: - o))’
=1

is the sum of squared error between the actual out-
put t; and the produced output o15) is over 4 pat-
terns of the parity (XOR) function. Similarly the
weights of 4 input 4 hidden and one output node
neural network were found to minimise the error for
the 4 input parity function. The number of weights
here are 25.

(28)

V. CONCLU®IONS AND FUTURE RESEARCH

One of our rescarch goal is to use the advantages
of interval computations in search and optimisa-
tion algorithms without any assuruption about the
underlying objective function. Many techniques
from mathematical programming, statistics, ma-
chine learning, neural networks, and evolutionary
algorithms have been proved to be robust in solv-
ing a wide variety of optimisation problems. These
techniques can be extended to take advantage of
techniques from interval computations.

An efficient approach that combines the efficient
strategy from Interval Global Optimisation Meth-
ods and robustness of the Evolutionary Algorithms
is proposed. In the proposed approach, searcn be-
gins with randomly created interval vectors with in-
terval widths equal to the whole domain. Before
the beginning of the evolutionary process, fitness of
these interval parameter vectors is defined by eval-
uating the objective function at the center of the
initial interval vectors. In the subsequent evolu-
tionary process the local optimisation process re-
turns an estimate of the bounds (lower or upper
for minimisation or maximisation) of the objective
function within the interval vectors. Though these
bounds may not be correct at the beginning due
to large interval widths, the process of reducing in-
terval widths over time and a selection approach
similar to simulated annealing helps in estimating
reasonably correct bounds. The interval parameter
vectors at these estimated bounds (local optima) are
then subjected to crossover and mutation. This evo-
lutionary process continues for predetermined num-
ber of generations. Using an efficient method to find
the bounds of the function in the sub-domain would
add significant power to this approach. In the pro-
posed approach a simple hill climber is used for this
purpose.
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Figure 3: Sines function
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In the proposed approach, though the verified
nature of the Interval Global Optimisation Meth-
ods is not preserved, empirical results over stan-
dard benchmark funclions has shown to have pre-
served the efficiency and robustness properties of the
two apprcaches. The proposed approach is bench-
marked against Paralle]l Genetic Algorithm and is
observed to be more robust and in some cases order
of magnitude efficient.

In conclusion, it is obuerved that extemsion of
one evolutionary algorithm with a local optimisa-
tion process, simulated annealing type selection pro-
cess and interval mutation operator significantly im-
proves the efficiency and robustness of the search
process.

REFERENCES

[1] K. De Jong, “*An Analysis of the Behavior of a
Class of Genetic Adaptive Systems”, PhD the-
sis, Usniversity of Michigen, Diss. Abstr. Int.
36(10), 5140B, University Microfilms No 76-
9381, 1975.

[2] D. E. Goldberg, “Real-Coded Genetic Al-
gorithms, Virtual Alphabets, and Blocking”,
Complez Systemns, 5, pp. 136-167, 1993.

[3] D.J. Ackley, “An Empirical Study of Bit Vec-
tor Function Optimisation®, in Genetic Algo-
rithmy and Simulated Annealing edited by L.
Davis, London, Pitman, pp. 194-200, 1987.

[4] A. A. Zbiglijavsky, Theory of Global Ran-
dom Search, Kluwer Academic Publishers,
1991.

(5] H. Ratschek and J. Rokne, Computer Meth-
ods for the Range of Functions, Halsted
Press, NY, 1084.

(6) E. Hansen, Global Optimisation Using In-
terval Analysis, Marcel Dekker, NY, 1994,

(7] D. Yuret, “From Genetic Algorithms to Effi-
cient Optimisation”, Masters Thesis, Dept. of
Electrical Engineering, MIT, May 1994.

[8] M. Muselli and S. Ridella, “Global Optimisa-
tion of Functions with the Interval Genetic Al-
gorithme”, Complez Systems, 6, pp. 193-212,
1992.

9] A. J. Keane, “Experiences with Optimisers

in Structural Design”, Dept. of Engineering

Science andy.heane@eng.oz.ac.uh, University of

Oxford, Oxford, UK, 1984.

D. E. Goldberg, Genetic Algorithms

In Search, Optimlsation and Machine

Learning, Addison Wesley, Reading, MA,

1988.

D. E. Rumelhart, J. L. McClelland and the

PDP Research Group, Parallel Distributed

Processing Vol 1 MIT press Cambridge,

(10]

[11]

1988.

[12] C.A. Floudas, and P.M. Pardolos, Recent Ad-
vances in Global Optimisation Princeton
Series in Computer Science, Princeton Univer-
sity Press, Princeton, NJ, 1992.

[13] G. Alefeld and J. Hersberger, Introduction
to Interval Computations, Academic Press,
NY, 1083.

[14] R. Fletcher, Practical Methods of Opti-
misation, John Wiley & Sons, 1987.

{15] 3. H. Holland, Adaptation in Natural and
Artificial Systems, The University of Michi-
gan Press, Ann Arbor, 1975.

{16] L. J. Fogel, A. J. Owens, and M. ] Walsh,

“Artificial Intelligence through Simulated Evo-

lution”, Jonh Wiely, New York, NY, 1966,

H. Katsuura, “Continuous No-where Differ-

entiable Function-An Application of Contrac-

tion Mappings”, The 4dmerican Mathematical

Monthly, Vol. 98, no. 5, 1991.

(18] J. H. Holland, “Escaping Brittleness: The

possibilities of General-Purpose Learning Al-

gorithms Applied to Parallel Rule-Based Sys-
tems®, In R. S. Michalski, J. G. Carbonell, and

T. M. Mitchell, editors, Machine Learning Vol.

I1, chapter 20, pp: 583-623. Morgan Kaufmann

Publishers, 18886.

J. R. Kosa, “Hierarchical Genetic Algorithms

Operating on Populations of Computer Pro-

grams”, In N. S. Sridharan, editor, Eleventh

international joinl conference on artificial in-
telligence, Morgan Kaufmann Publishers, pp:

768-774, 1989.

(20] I. Rechenberg, “Evolutionsstrategie: Opti-

mierung Technisher Systeme Nach Prinsip-

ine der Biologischen Evolution”, Frommann-

Holsboog Verlag, Stuttgart, 1873.

Hans-Paul Schwefel, Numerical Optimisa-

tion of Computer Models, Wiely, Chich-

ester, 1981.

J. J. Grefenstette, (Editor) Proceedings of the

Firat int’l Conference un Genetic Algorithms

and Applicalions, Hilledale, NJ, Lawrence Erl-

baum, 1985.

J. J. Grefenstette, (Editor) Proceedings of the

Second int'l conference on genetlic algorithms

and applications, Hilledale, NJ, Lawrence Erl-

baum, 1987.

J. D. Schaffer, (Editor) Proceedings of the Third

int'l Conference on Genetic Algorithms and

Applications, San Mateo, CA, Mogan Kauf-

mann, 1989,

R. K. Belew and L. B. Booker, (Editor) Pro-

ceedings of the Fourth int'l Conference on Ge-

netic Algorithms and Applications, San Diego,

[17)

[16]

21]

(22]

(23]

[24]

(25)



APIC'85, El Paso, Extended Abstracts, A Supplement to the international journal of Reliable Computing

CA, Mogan Kaufmann, 1991.

[26] D. B. Fogel and J. W. Atmar, (Editors) Pro-
ceedings of the Firsi Annuel Conference on
Evwolutionary Programming, La Jolla, CA, Evo-
lutionary Programming Society, 1992.

{27] H.-P. Schwefel and Rt. Manner, (Editors), Per-
allel Problem Solving from Nature - Proc. lst
worhshop PPSN I, 1, Vol. 498 of Lecture notes
in computer science, Berlin, Springer, 1991.

{28] R. Manner and B. Manderick, (Editors), Par-
allel Problern Solving from Nature, 2, Amester-
dam, Elsevier, 1592.

[29] T. Back, F. Hoffmeister and H.-P. Schwefel,
“Applications of Evolutionary Algorithms®, re-
port of the Systemns Analysis Research Group
SYS-2/92. Univenity of Dortmund, Depart-
ment of Computer Science, 1992,

[30]) T. Back, “A User’s Guide to GENEsY:
1.0", report of the Systems Analysis Resecarch
Group, University of Dortmund, Department
of Computer Science, 1992.

(31] P. Ross, “About PGA v2.7%, Dept of Al, Uni-
versily of Edinburgh, June 1994.



